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We continued to discuss the two-body conservative central force problem… We found 

that the orbit is described by 𝑟(𝜑) = 𝑐
1+𝜖 cos𝜑

, where 𝑐 = ℓ2

𝜇𝜇
 is a length scale and 𝜖 is an un-

determined positive dimensionless constant.  This is the equation for the orbit of a planet 
around the sun, or a satellite around the earth.  Note that when the un-determined constant 
𝜖 > 1, the denominator of 𝑟(𝜑) has a zero for some angle 𝜑, and the particle is off at infinity 
for that angle.  This is an un-bounded orbit, like those with energy 𝐸 > 0 noted in the last 
lecture.  When 𝜖 < 1 the values of 𝑟(𝜑) are finite for all 𝜑, and the orbit is bounded, like 
those with 𝐸 < 0 noted above.  The fact that 𝑟(𝜑 + 2𝜋) = 𝑟(𝜑) means that the orbit is 
closed and periodic (this is not the case for other types of force interactions such as 𝐹(𝑟)~−
1/𝑟3).   

The orbit for 𝜖 < 1 is an ellipse and is described by (𝑥+𝑑)2

𝑎2
+  𝑦

2

𝑏2
= 1, where  𝑎 = 𝑐

1−𝜖2
 is 

the semi-major axis, 𝑏 = 𝑐
√1−𝜖2

 is the semi-minor axis, and 𝑑 = 𝑎𝜖 is the distance from the 
center of the ellipse to the focus (you will prove this in HW8).  The ratio of semi-minor to 
semi-major axis lengths is 𝑏/𝑎 = √1 − 𝜖2, showing that 𝜖 is the ellipticity of the orbit.  One 
can also derive Kepler’s third law of planetary motion relating the orbital period 𝜏 and the 

semi-major axis as 𝜏2 = 4𝜋2

𝐺𝑀𝑠𝑠𝑠
𝑎3 for the case of a planet orbiting the sun (here one assumes 

that the mass of the planet is much smaller than that of the sun).  Finally we calculated the 

total mechanical energy in the center of mass frame as 𝐸 = 𝜇2𝜇
2ℓ2

(𝜖2 − 1).  This shows that 
orbits with 𝜖 > 1 are un-bounded (and described by a hyperbola), and those with 𝜖 < 1 are 
bounded.  Orbits with 𝜖 = 1 are parabolic.  The un-bounded (hyperbolic) orbits have a range 
of angles 𝜑 for which there is no solution for 𝑟(𝜑). 

We next started a discussion of scattering theory.  In the simplest scattering experiment 
one has a particle or entity (the projectile) that is launched with a known energy and 
momentum into a target, the projectile interacts with particles in the target, and then comes 
out as the same particle but with a new energy and momentum.  More generally, the particle 
could be absorbed by the target, or be transformed into one or more different particles upon 
exiting the target.  We can measure the exiting angle of the particle using spherical 
coordinates, with the z-axis along the initial projectile direction and the angular coordinates 
𝜃,𝜑 specifying the new direction. Examples of scattering experiments include Rutherford 
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scattering and angle-resolved photoemission spectroscopy (ARPES), which is basically the 
photoelectric effect on steroids. 

The only quantity not controlled or measured in a typical scattering experiment is the 
impact parameter 𝑏 of the projectile with respect to the target particle.  The impact parameter 
is the distance of closest approach to the target particle, assuming no forces of interaction 
cause the projectile to change from it’s initial direction.  Because we cannot control the 
impact parameter, we have to perform many experiments in which all possible values of 𝑏 
are employed for the incident beam of projectiles.  The objective of our calculations will be 
to find the functional relationship between the scattering angle and the impact parameter, 
namely 𝑏 = 𝑏(𝜃), or 𝜃 = 𝜃(𝑏). 

Given the lack of control over the impact parameter, we resort to a statistical description 
of the resulting scattering.  With such a description, we can write the number of particles 
scattered 𝑁𝑠𝑐𝑎𝑠𝑠 in terms of the number of particles incident 𝑁𝑖𝑖𝑐 as 𝑁𝑠𝑐𝑎𝑠𝑠 = 𝑁𝑖𝑖𝑐𝑛𝑠𝑎𝑡𝑡𝑡𝑠𝜎, 
where 𝑛𝑠𝑎𝑡𝑡𝑡𝑠 is the density of target particles projected into the two-dimensional plane 
(𝑛𝑠𝑎𝑡𝑡𝑡𝑠~1/𝑚2) and 𝜎 is defined as the scattering cross section of each particle.  𝜎 is often 
measured in units of ‘barns’, which is 10−28𝑚2.  We can generalize the concept of cross 
section to any process, including capture (𝜎𝑐𝑎𝑐𝑠𝑐𝑡𝑡), ionization (𝜎𝑖𝑖𝑖𝑖𝑖𝑎𝑠𝑖𝑖𝑖), fission (𝜎𝑓𝑖𝑠𝑠𝑖𝑖𝑖), 
etc.  This is done by using the definition 𝑁𝑠𝑐𝑎𝑠𝑠,𝑥 = 𝑁𝑖𝑖𝑐𝑛𝑠𝑎𝑡𝑡𝑡𝑠𝜎𝑥 for process “𝑥”.  These 
different processes are often referred to as “scattering channels.” 

Experiments start with a beam of projectile particles of identical structure and equal 
initial momenta and energy.  The projectiles enter the target with all possible values of 
impact parameter.  One then measures how many particles come out with angle of exit  𝜃,𝜑 
and also the energy and momentum of the exiting particle.  Our job is to identify the force of 
interaction between the projectile and target particles from the number of particles scattered 
through angle 𝜃,𝜑, for all possible angles.  We write the ‘angle-resolved’ scattering cross 
section as 𝑁𝑠𝑐𝑎𝑠𝑠(𝑖𝑛𝑖𝑖 𝑑Ω 𝑎𝑟𝑖𝑎𝑛𝑑 𝜃,𝜑)  = 𝑁𝑖𝑖𝑐𝑛𝑠𝑎𝑡𝑡𝑡𝑠

𝑑𝑑
𝑑Ω

(𝜃,𝜑)𝑑Ω, where 𝑑𝑑
𝑑Ω

(𝜃,𝜑) is 
called the differential scattering cross section (DSCS).  Note that the element of differential 
solid angle is 𝑑Ω = sin𝜃 𝑑𝜃𝑑𝜑.  We expect that if this quantity is integrated over all possible 
exiting angles, we should recover the total scattering cross section for this process: 𝜎 =

∬𝑑𝑑
𝑑Ω

(𝜃,𝜑)𝑑Ω.  We shall assume that all scattering potentials are spherically symmetric, 
hence there will be no dependence on the 𝜑 coordinate. 
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